Quantitative Aptitude - SWGTQ-180105

# **ACE**

# Section-wise Grand Test – <u>Quantitative Aptitude</u> – SWGTQ-180105 HINTS & SOLUTIONS

|         | AN      | ISWER K | EY      |         |  |
|---------|---------|---------|---------|---------|--|
| 1.(3)   | 11. (4) | 21. (4) | 31. (4) | 41. (1) |  |
| 2.(1)   | 12. (2) | 22. (2) | 32.(1)  | 42. (3) |  |
| 3.(3)   | 13. (1) | 23. (2) | 33. (4) | 43. (2) |  |
| 4.(1)   | 14. (3) | 24. (3) | 34. (3) | 44. (5) |  |
| 5.(2)   | 15. (4) | 25. (2) | 35. (2) | 45. (4) |  |
| 6. (5)  | 16. (1) | 26. (3) | 36. (2) | 46. (1) |  |
| 7. (3)  | 17. (3) | 27. (4) | 37. (2) | 47. (4) |  |
| 8. (4)  | 18. (4) | 28. (2) | 38. (5) | 48. (3) |  |
| 9. (1)  | 19. (5) | 29. (4) | 39.(4)  | 49. (4) |  |
| 10. (3) | 20. (2) | 30. (1) | 40. (1) | 50. (5) |  |

### HINTS & SOLUTIONS

1.(3) Let speed of man be x km/hr and that of current be r kmph. Let speed of man be x km/hr and that of current be r kmph.  $\frac{2}{x-r} = \frac{15}{60} \text{ or, } x-r = 8 \dots (i)$   $\frac{2}{x+r} = \frac{10}{60} \text{ or, } x+r = 12 \dots (ii)$ Solving (i) and (ii), x = 10, r = 2Required time  $=\frac{2}{10-4} = \frac{2}{6} = \frac{1}{3}$  hr.  $=\frac{1}{3}$  hr = 20 minutes Let speed of longer train be xand that of shorter train be y. 2.(1) Then,  $\frac{x+y}{x-y} = \frac{42}{21}$ or, x + y = 2x - 2yor, x = 3yor,  $\frac{x}{y} = \frac{3}{1}$ 3.(3) No. of ways =  ${}^{8}C_{5} \times {}^{4}C_{2} + {}^{8}C_{6} \times {}^{4}C_{1} + {}^{8}C_{7}$  $= \frac{8 \times 7 \times 6}{3 \times 2} \times \frac{4 \times 3}{2} + \frac{8 \times 7}{2} \times 4 + 8$ = 456 Area leveled by roller =  $400 \times 2 \times \frac{22}{7} \times \frac{0.42}{2} \times 1$ 4.(1)  $= 528 \text{ m}^2$ Total cost = 528 × 100 = Rs. 52800 5.(2) For the biggest cube, face diagonal of cube = diameter of cylinder  $\sqrt{2}a = 30$ or,  $a = 15\sqrt{2} \approx 21.2cm$ But, the side of the cube cannot be more than 20 cm Therefore; a = 20cm $Volume = a^3 = 8000 \ cm^3$ 6. (5) Let time taken to complete the work by a man and a woman are 'M' and 'W' days respectively.  $A \rightarrow \frac{2}{M} + \frac{3}{W} = \frac{1}{6}$  $B \rightarrow \frac{W}{9} - \frac{M}{3} = 5$  $C \rightarrow \frac{8/W}{4/M} = \frac{1}{3}$ 

| 7. (3) | Ratio of efficiencies is required to answer the question which<br>can be obtained from either C alone or A and B together.<br>Hence, the question can be answered by using either C<br>alone or A and B together.<br>Length of train B is 20% less than that of train A.<br>$A \rightarrow$ Train A crosses another train B moving in same<br>direction in 72 sec.<br>$\therefore$ Time taken = 72 sec<br>$R \rightarrow$ Speed of train A is 25km/h more than that of train R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | ∴ Speed of train A – Speed of train B = 25km/h.<br>C → Length of train B is 20% less than that of train A.<br>∴ Let the lengths of trains A and B be 5x and 4x meters<br>respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | From all the three statements,<br>Since the trains are moving in the same directions,<br>∴ Relative speed = Speed of train A – Speed of train B =<br>25km/h                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| AN     | Sum of lengths of trains = $5x + 4x = 9x$<br>Time taken = $\frac{\text{Sum of lengths of trains}}{\text{Relative speed}}$<br>$\Rightarrow 72 = \frac{9x}{72}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|        | Hence, the question can be answered by using all the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 8. (4) | A $\rightarrow$ Cone has same base as that of the cylinder (same radius) and height 30 cm.<br>Volume of cone = Volume of cylinder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 9/6    | $\Rightarrow \frac{1}{3} \times \pi \times (r_{\text{cone}})^2 \times h_{\text{cone}} = \pi \times (r_{\text{cylinder}})^2 \times h_{\text{cylinder}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|        | $\rightarrow$ <sup>1</sup> × h = h · · · (··r = r · · ·)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|        | 3 $1  cone - 1  cylinder$ (• 1 cone - 1 cylinder)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|        | $\Rightarrow h_{cylinder} = 10 \text{ cm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|        | $\Rightarrow h_{cylinder} = 10 \text{ cm}$<br>B $\rightarrow$ Circumference of base of the cylinder = 132 cm<br>$\Rightarrow 2 \times \pi \times r_{cylinder} = 132 \text{ cm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RP     | $\Rightarrow h_{cylinder} = 10 \text{ cm}$ $B \rightarrow Circumference of base of the cylinder = 132 \text{ cm}$ $\Rightarrow 2 \times \pi \times r_{cylinder} = 132 \text{ cm}$ $\Rightarrow r_{cylinder} = 21 \text{ cm}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| RP     | $ \Rightarrow h_{cylinder} = 10 \text{ cm} $ $ \Rightarrow h_{cylinder} = 10 \text{ cm} $ $ B \rightarrow Circumference of base of the cylinder = 132 \text{ cm} $ $ \Rightarrow 2 \times \pi \times r_{cylinder} = 132 \text{ cm} $ $ \Rightarrow r_{oylinder} = 21 \text{ cm} $ $ C \rightarrow Volume of cylinder = 13860 \text{ cm}^3 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RP     | $\Rightarrow h_{cylinder} = 10 \text{ cm}$ $B \rightarrow Circumference of base of the cylinder = 132 \text{ cm}$ $\Rightarrow 1 c_{cylinder} = 132 \text{ cm}$ $\Rightarrow r_{cylinder} = 21 \text{ cm}$ $C \rightarrow Volume of cylinder = 13860 \text{ cm}^{3}$ $\Rightarrow \pi \times (r_{cylinder})^{2} \times h_{cylinder} = 13860 \text{ cm}^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| RP     | $\begin{array}{l} \Rightarrow \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| RA     | $\Rightarrow \frac{1}{3} \times 11 \text{ fcone} = 1 \text{ fcylinder} \qquad (1 \text{ from } e^{-1} \text{ cylinder})$ $\Rightarrow \frac{1}{3} \times 11 \text{ fcone} = 10 \text{ cm}$ $B \rightarrow \text{Circumference of base of the cylinder } = 132 \text{ cm}$ $\Rightarrow 2 \times \pi \times r_{\text{cylinder}} = 132 \text{ cm}$ $\Rightarrow r_{\text{cylinder}} = 21 \text{ cm}$ $C \rightarrow \text{Volume of cylinder } = 13860 \text{ cm}^{3}$ $\Rightarrow \pi \times (r_{\text{cylinder}})^{2} \times h_{\text{cylinder}} = 13860 \text{ cm}^{3}$ Radius and height of the cylinder can be obtained from any two statements.<br>Hence, the question can be answered by using any two of the base of the cylinder is together.                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 9. (1) | $ \Rightarrow \frac{1}{3} \times 11 \text{ cone} = 1 \text{ dyinder} $ (* 1 one = 1 dyinder)<br>$ \Rightarrow \frac{1}{3} \times 11 \text{ cone} = 10 \text{ cm} $ $ B \rightarrow \text{Circumference of base of the cylinder = 132 \text{ cm} }$ $ \Rightarrow 2 \times \pi \times r_{\text{cylinder}} = 132 \text{ cm} $ $ C \rightarrow \text{Volume of cylinder = 13860 \text{ cm}^3 }$ $ \Rightarrow \pi \times (r_{\text{cylinder}})^2 \times h_{\text{cylinder}} = 13860 \text{ cm}^3 $ Radius and height of the cylinder can be obtained from any two statements.<br>Hence, the question can be answered by using any two of the three statements together.<br>A \rightarrow \text{Let the number of green and blue balls in the bag be }                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 9. (1) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 9. (1) | $\begin{array}{l} \Rightarrow \ n_{cylinder} = 10 \ cm \\ B \rightarrow Circumference of base of the cylinder = 132 \ cm \\ \Rightarrow 2 \times \pi \times r_{cylinder} = 132 \ cm \\ \Rightarrow 2 \times \pi \times r_{cylinder} = 21 \ cm \\ C \rightarrow Volume of cylinder = 13860 \ cm^3 \\ \Rightarrow \pi \times (r_{cylinder})^2 \times h_{cylinder} = 13860 \ cm^3 \\ Radius and height of the cylinder can be obtained from any two statements. \\ Hence, the question can be answered by using any two of the three statements together. \\ A \rightarrow Let the number of green and blue balls in the bag be 4x and 3x respectively. \\ B \rightarrow Numbers of red balls + 2 = Number of green balls \\ \Rightarrow R + 2 = G \\ C \rightarrow Number of green balls + Number of blue balls = 2 \times \end{array}$                                                                                                                                                                                                                                                                                                                                                  |
| 9. (1) | rightarrow = 1 and $rightarrow = 1$ (* 1 one - 1 dyname)<br>$\Rightarrow$ h <sub>cylinder</sub> = 10 cm<br>B → Circumference of base of the cylinder = 132 cm<br>$\Rightarrow 2 \times \pi \times r_{cylinder} = 132 cm$<br>$\Rightarrow r_{cylinder} = 21 cm$<br>C → Volume of cylinder = 13860 cm <sup>3</sup><br>$\Rightarrow \pi \times (r_{cylinder})^2 \times h_{cylinder} = 13860 cm^3$<br>Radius and height of the cylinder can be obtained from<br>any two statements.<br>Hence, the question can be answered by using any two of<br>the three statements together.<br>A → Let the number of green and blue balls in the bag be<br>4x and $3x$ respectively.<br>B → Numbers of red balls + 2 = Number of green balls<br>$\Rightarrow R + 2 = G$<br>C → Number of green balls + Number of blue balls = 2 ×<br>Number of red balls<br>$\Rightarrow G + B = 2R$                                                                                                                                                                                                                                                                                                                  |
| 9. (1) | → $\frac{1}{3}$ × ficence – figuinder (+ from = - figuinder)<br>⇒ h <sub>cylinder</sub> = 10 cm<br>B → Circumference of base of the cylinder = 132 cm<br>⇒ 2 × π × r <sub>cylinder</sub> = 132 cm<br>⇒ r <sub>cylinder</sub> = 21 cm<br>C → Volume of cylinder = 13860 cm <sup>3</sup><br>⇒ π × (r <sub>cylinder</sub> ) <sup>2</sup> × h <sub>cylinder</sub> = 13860 cm <sup>3</sup><br>Radius and height of the cylinder can be obtained from<br>any two statements.<br>Hence, the question can be answered by using any two of<br>the three statements together.<br>A → Let the number of green and blue balls in the bag be<br>4x and 3x respectively.<br>B → Numbers of red balls + 2 = Number of green balls<br>⇒ R + 2 = G<br>C → Number of green balls + Number of blue balls = 2 ×<br>Number of red balls<br>⇒ G + B = 2R<br>Probability of getting a red ball = $\frac{\text{Number of red balls}}{\text{Total number of balls}}$                                                                                                                                                                                                                                            |
| 9. (1) | $ → \frac{3}{3} \times \text{Incone - Reyninder} $ (* From = 1 eyinder)<br>$ → h_{cylinder} = 10 \text{ cm} $ $ B → \text{Circumference of base of the cylinder = 132 \text{ cm} }$ $ → 2 × π × r_{cylinder} = 132 \text{ cm} $ $ ⇒ r_{cylinder} = 21 \text{ cm} $ $ C → \text{Volume of cylinder = 13860 \text{ cm}^3 }$ $ ⇒ π × (r_{cylinder})^2 × h_{cylinder} = 13860 \text{ cm}^3 $ Radius and height of the cylinder can be obtained from any two statements.<br>Hence, the question can be answered by using any two of the three statements together.<br>A → Let the number of green and blue balls in the bag be 4x and 3x respectively.<br>B → Numbers of red balls + 2 = Number of green balls<br>$ ⇒ R + 2 = G $ $ C → \text{Number of green balls + Number of blue balls = 2 × \text{Number of red balls} $ $ ⇒ G + B = 2R $ $ Probability of getting a red ball = \frac{\text{Number of red balls}}{\text{Total number of balls}} $                                                                                                                                                                                                                                      |
| 9. (1) | $ → \frac{1}{3} \times \text{Incone - Reyninder} $ (* From e - Reyninder)<br>$ → \text{hcylinder} = 10 \text{ cm} $ $ B → \text{Circumference of base of the cylinder = 132 \text{ cm} }$ $ → 2 × \pi × \text{reylinder} = 132 \text{ cm} $ $ → roylinder = 21 \text{ cm} $ $ C → \text{Volume of cylinder = 13860 \text{ cm}^3 }$ $ → \pi × (reylinder)^2 × \text{hcylinder} = 13860 \text{ cm}^3 $ Radius and height of the cylinder can be obtained from any two statements.<br>Hence, the question can be answered by using any two of the three statements together.<br>A → Let the number of green and blue balls in the bag be 4x and 3x respectively.<br>B → Numbers of red balls + 2 = Number of green balls<br>$ → R + 2 = G $ $ C → \text{Number of green balls + Number of blue balls = 2 × \text{Number of red balls} $ $ → G + B = 2R $ $ Probability of getting a red ball = \frac{\text{Number of red balls}}{\text{Total number of balls}} $ $ = \frac{R}{3R} $ $ From statements A and B, $ $ Number of red balls = Number of green balls = 2 - 4x - 2 $                                                                                                             |
| 9. (1) | $ → \frac{3}{3} \times \text{Incone - Reyninder} $ (* From = 1 eyinnder)<br>$ → h_{cylinder} = 10 \text{ cm} $ $ B → \text{Circumference of base of the cylinder = 132 \text{ cm} }$ $ → 2 × π × r_{cylinder} = 132 \text{ cm} $ $ → r_{cylinder} = 21 \text{ cm} $ $ C → \text{Volume of cylinder = 13860 \text{ cm}^3 }$ $ → π × (r_{cylinder})^2 × h_{cylinder} = 13860 \text{ cm}^3 $ Radius and height of the cylinder can be obtained from any two statements.<br>Hence, the question can be answered by using any two of the three statements together.<br>A → Let the number of green and blue balls in the bag be 4x and 3x respectively.<br>B → Numbers of red balls + 2 = Number of green balls<br>$ → R + 2 = G $ $ C → \text{Number of green balls + Number of blue balls = 2 × \text{Number of red balls} $ $ → G + B = 2R $ $ Probability of getting a red ball = \frac{\text{Number of red balls}}{\text{Total number of balls}} $ $ = \frac{R}{3R} $ $ From statements A \text{ and } B, \text{Number of red balls = Number of green balls - 2 = 4x - 2 $ $ Probability of getting a red ball = \frac{\text{Number of red balls}}{\text{Total number of red balls}} $ |
| 9. (1) | $ → \frac{3}{3} \times \text{Incone = 1 eyinder} $ (* 1 cone = 1 eyinder)<br>$ ⇒ h_{cylinder} = 10 \text{ cm} $ $ B → Circumference of base of the cylinder = 132 cm   ⇒ 2 × π × r_{cylinder} = 132 \text{ cm}   ⇒ r_{cylinder} = 21 \text{ cm}   C → Volume of cylinder = 13860 \text{ cm}^3   ⇒ π × (r_{cylinder})^2 × h_{cylinder} = 13860 \text{ cm}^3  Radius and height of the cylinder can be obtained from any two statements.Hence, the question can be answered by using any two of the three statements together.A → Let the number of green and blue balls in the bag be 4x and 3x respectively.B → Numbers of red balls + 2 = Number of green balls ⇒ R + 2 = G   C → Number of green balls + Number of blue balls = 2 × Number of red balls   ⇒ G + B = 2R  Probability of getting a red ball = \frac{\text{Number of red balls}}{\text{Total number of balls}}   = \frac{R}{3R}  From statements A and B, Number of red balls = Number of green balls - 2 = 4x - 2Probability of getting a red ball = \frac{\text{Number of red balls}}{\text{Total number of balls}}   = \frac{4x - 2}{4x + 3x + 4x - 2} $                                                             |

Quantitative Aptitude - SWGTQ-180105  $A \rightarrow 6 \times SP = 7 \times CP$ 10. (3)  $\implies$  CP =  $\frac{6}{2}$  of SP  $B \rightarrow SP - 40 = CP + 10\%$  of CP  $\Rightarrow$  SP - 40 = 1.1 of CP  $C \rightarrow \left(100 - 14\frac{2}{7}\right)\%$  of SP = CP 17. (3)  $\implies$  CP =  $\frac{6}{7}$  of SP So, Hence, either A and B together or B and C together are 600 sufficient to answer the question. 11.(4) Let the height of water in vessel D be h cm. Volume of vessel E =Volume of water in vessel D  $\Rightarrow \frac{2}{3} \times \Pi \times 21^3 = \Pi \times 28^2 \times h$  $\Rightarrow$  h =  $\frac{63}{8}$  = 7 $\frac{7}{8}$  cm Capacity of vessel A =  $(length)^3 = 35^3 = 42875 cm^2$ 12. (2) 4y Capacity of vessel B = Area of bottom × height =  $1260 \times 25 = 31500 \ cm^2$ Required Percentage =  $\frac{42875 - 31500}{31500} \times 100$  $=36\frac{1}{2}\%$  $\frac{\text{Radius of vessel C}}{\text{Height of vessel C}} = \frac{3}{4}$ 13. (1)  $y = \frac{x}{5}$  $\implies \frac{\text{Radius}}{28} = \frac{3}{4}$ 5 Radius of vessel C = 21 cm Slant height of vessel  $C = \sqrt{Radius^2 + Height^2}$  $=\sqrt{21^2+28^2}$  $= 35 \, \mathrm{cm}$ Ratio of lateral surface areas of vessel C and vessel E: Lateral Surface Area of vessel C Lateral Surface Area of vessel E  $\Pi \times \text{Radius} \times \text{Slant Height}$ 18. (4)  $\frac{2 \times \Pi \times \text{Radius}^2}{\Pi \times 21 \times 35}$  $=\frac{1}{2 \times \Pi \times 21^2}$ 9x so 3y  $=\frac{5}{6}=5:6$ x = 2y14. (3) Let the radius of vessel F be r cm Capacity of cylindrical vessel F = 10% more than capacity of vessel A  $\frac{22}{7} \times r^2 \times 49 = 1.1 \times 35 \times 35 \times 35$  $\Rightarrow$  r = 17.5 cm Required Percentage =  $\frac{21 - 17.5}{21} \times 100$ 19. (5)  $= 16\frac{2}{5}\%$ 15. (4) Total Area to be painted = Lateral Surface Area of vessel D + (Lateral Surface Area + Area of the bottom) of vessel A  $= 2 \times \frac{22}{7} \times 28 \times 20 + 5 \times 35 \times 35$  $= 3520 + 6125 = 9645 \text{ cm}^2$ Total expenditure =  $0.2 \times 9645 = \text{Rs.}1929$ . 16. (1) Time taken by Shyam on Tuesday = 4 h Let distance covered by Shyam on Monday and Tuesday 9 be and respectively And speed of Shyam on Monday and Tuesday be and 20. (2) respectively. So,  $\frac{4x}{4y} = 4 \Longrightarrow x = 4y$ 640 Let distance covered by Meena on Monday and Tuesday 4 be 13 m and 11 m And speed of Meena on Monday and Tuesday be 13n and 22n 280  $\frac{11m}{m} = 4 \Longrightarrow m = 8n$ 4 22n According to question, Required ratio = 4 : 9  $4x = \left(1 + \frac{5}{11}\right) 11m \Rightarrow 4x = \frac{16}{11} \times 11m \Rightarrow x = 4m$ Or

I RACE  $x = 4 \times 8n$ x = 32 n Required ratio = y : 22n =  $\binom{x}{4}$  :  $(22 \times \frac{x}{32}) = \frac{x}{4} : \frac{11x}{16} = 4 : 11$ Let speed of Ram and Tinku on Tuesday is 4y and 7n respectively - = 44y + 7n $4y + 7n = 150 \dots (i)$ Let distance covered by Ram on Monday and Tuesday be 3x and 4x  $\frac{4x}{-}=5$ x = 5y ...(ii) But 3x = 300x = 100 Putting x in eq. (ii)  $=\frac{100}{r}$   $\Rightarrow$  y = 20 Putting value of y in (i)  $4 \times 20 + 7n = 150$ 7n = 150 - 80n = 10 Distance covered by Tinku on Tuesday =  $7 \times 10 \times 4 = 280$  km Distance covered by Tinku on Monday =  $\frac{280}{7} \times 9 = 360$  km Let Distance covered by Tina on Monday & Tuesday = 7x and 9x And speed of Tina on Monday and Tuesday be 2y and 3y = 6 Time taken by Tina on Monday  $=\frac{7x}{2y} = \frac{7 \times 2y}{2y} = 7$  hours Similarly time taken by Meena on Monday = 8 hour Required percentage  $=\frac{8-7}{8} \times 100 = \frac{100}{8} \% \Rightarrow 12\frac{1}{2}\%$ Speed of Ram on Monday and Tuesday will be 60 km/hr, 80 km/hr respectively Distance covered by Ram on Tuesday = 80 × 5 = 400 km Distance covered by Ram on Monday =  $\frac{400}{4} \times 3 = 300$ According to question (400 + 300) difference, distance covered by Shyam on both days = 740 Distance covered by Shyam on Monday  $=\frac{740+700}{5}\times 5$  $=\frac{1440}{2} \times 5$ = 800 kmRequired ratio = 3 : 8 Distance travelled by Shyam on Tuesday  $=\frac{800}{5}\times 4$ = 640 km = 4y when (4y is speed of Shyam on Tuesday) y = 40 Distance travelled by Tinku on Tuesday =  $\frac{360}{9} \times 7 = 280$  km = 7y (where 7y speed of Tinku on Tuesday) y = 10 Speed of Tinku on Monday = 9y = 90 km/hr

#### Quantitative Aptitude - SWGTQ-180105

I RACE So, the actual investments: 21.(4) B requires twice the time A requires to do the work.  $\therefore$  Ratio of efficiencies of A and B = 2 : 1 B 400 900 500 At the beginning of the Let, A and B do 2x units and x units of work per day respectively. year Work done by A = 10 × 2x = 20x units At the end of first 500 900 400 Work done by  $B = (10 + 4) \times x = 14x$  units quarter Ratio of the efficiencies of C and D = 5 : 3 At the end of second 500 400 1000 Let, C and D do 5y units and 3y units of work per day respectively. quarter 2 days' work of C and D = 5y + 3y = 8y units At the end of third 900 900 1800 30 days' work of C and D =  $\frac{30}{2} \times 8y = 120y$  units quarter Now, Ratio of profit sharing among A, B and C 32% of the total work is done by C and D.  $= (400 \times 12 + 500 \times 9 + 500 \times 6 + 900 \times 3) : (900 \times 12 + 100 \times 12) = (900 \times 12) =$ 32% of total work = 120y units  $900 \times 9 + 400 \times 6 + 900 \times 3$  : (500 × 12 + 400 × 9 Total work =  $\frac{100}{32} \times 120y = 375y$  $+1000 \times 6 + 1800 \times 3$ 68% of total work = 20x + 14x = 34x= 15000 : 24000 : 21000 : Total work =  $\frac{100}{32} \times 120y = \frac{100}{68} \times 34x$ = 5 : 8 : 7  $\Rightarrow$  x =  $\frac{15}{2}$ y If each works 2 days at a time alternately starting with A, 25. (2) the work is completed in exactly 10 days. So, the efficiencies of A, B, C and D per day are : A works for 6 days and B worked for 4 days.  $15y, \frac{15}{2}y$ , 5y and 3y units respectively.  $\frac{6}{a} + \frac{4}{b} = 1$  .....(i) Time taken by A to complete twice the work  $=\frac{2 \times 375y}{15y} = 50$  days If B starts, the work is completed in 10.5 days. 22. (2) 10 days' work of A and B : B works for 6 days and A worked for 4.5 days.  $= 10 \times (15y + \frac{15}{2}y) = 225y$  units  $\frac{6}{b} + \frac{4.5}{2} = 1$  .....(ii) Work done by E and F By solving (i) and (ii) = 375y - 225y = 150y units a = 9 days Time taken by E and F to complete the whole work  $=\frac{12}{150y} \times 375y = 30$  days And, b = 12 days Time taken by A and B working together to complete the work =  $\frac{1}{\frac{1}{a} + \frac{1}{b}} = \frac{1}{\frac{1}{9} + \frac{1}{12}} = \frac{36}{7} = 5\frac{1}{7}$  days Per day work done by E and  $F = \frac{1}{30}$ Ratio of efficiencies of E and F is 3 : 2. Diff. b/w part of work done by E alone and work done by F alone  $=\frac{3-2}{3+2}=\frac{1}{5}$ 26. (3) Number of unsold Honda City cars in year 2012  $= \left( \left( 20 \times \frac{(100 - 70)}{100} \right) + 50 \right) \times \frac{(100 - 90)}{100}$ Diff. b/w part of work done by E alone and work done by F = 5.6 thousand alone in one day  $=\frac{1}{5} \times \frac{1}{30} = \frac{1}{150}$ Number of unsold Honda City cars in year 2013  $= (5.6+60) \times \frac{(100-100)}{100} = 0$ 23.(2) Clearly, at the beginning of a year and at the end of first Number of unsold Honda City cars in year 2014  $= 50 \times \frac{(100 - 80)}{100} = 10$  thousand quarter, the investment made by B is half of the total investment made by all the three till the end of first Number of unsold Honda City cars in year 2015 =  $(10+30) \times \frac{(100-50)}{100} = 20$  thousand quarter If they invest additional amount at the end of each guarter Number of unsold Honda City cars in year 2016 =  $(20 + 40) \times \frac{(100 - 75)}{100} = 15$  thousand Required Average =  $\frac{5.6+0+10+20+15}{5} = \frac{50.6}{5}$ in the same ratio as they invested at the end of the first guarter, then the total investment made by B will be half of the total investment made by all the three for the = 10.12 thousand = 10120 whole year. 27.(4) Number of Honda Civic cars sold in year 2012 : Profit of B =  $\frac{1}{2} \times 17500 = \text{Rs.}8750$  $= \left( \left( 80 \times \frac{(100 - 75)}{100} \right) + 70 \right) \times \frac{60}{100} = 54 \text{ thousand}$ Number of Honda City cars sold in year 2012 =  $\left(\left(20 \times \frac{(100 - 70)}{100}\right) + 50\right) \times \frac{90}{100} = 50.4$  thousand 24. (3) Let, the amounts invested by A, B and C: С At the beginning of the 400 900 500 year Total Revenue = 54000×1500000 + 50400×1200000 9x At the end of first 5x 4x = (8100 + 6048) crore = Rs.14148 crores quarter Number of Honda Civic cars sold in year 2013 At the end of second 28. (2) 10y 5y 4y  $= \left( \left( \left( \left( 80 \times \frac{(100 - 75)}{100} \right) + 70 \right) \times \frac{(100 - 60)}{100} \right) + 20 \right) \times \frac{80}{100} = 44.8 \text{ thousand}$ quarter At the end of third z z 2z 100% of Honda City cars sold in year 2013. Therefore, No unsold Honda City quarter car left at the beginning of year 2014. Now. Number of Honda City cars sold in year  $2014 = 50 \times \frac{80}{100} = 40$  thousand 9x = 4x + 500Required percentage =  $\frac{44.8 - 40}{40} \times 100 = 12\%$  $\Rightarrow x = 100$  $\frac{z+z+2z}{2} = 1200 \Longrightarrow z = 900$ 100% of Honda City cars sold in year 2013. Therefore, No 29. (4) 3 unsold Honda City car left at the beginning of year 2014.  $5x = 5y \Longrightarrow x = y = 100$ Number of Honda City cars sold in year 2014

## Quantitative Aptitude – SWGTQ-180105

and 3 software developers



=  $50 \times \frac{80}{100} = 40$  thousand No. of ways of forming the required project team  $= {}^{3}C_{1}. {}^{5}C_{3}. {}^{8}C_{2}. {}^{12}C_{2} + {}^{3}C_{1}. {}^{5}C_{3}. {}^{8}C_{1}. {}^{12}C_{3}$ Number of Honda City cars sold in year 2015  $=\left(\left(50 \times \frac{(100 - 80)}{100}\right) + 30\right) \times \frac{50}{100} = 20$  thousand = 108240 Number of ways of forming a team with 2 project leads, 3 34. (3) Number of unsold Honda Civic cars in year 2011 software testers and x-2 software developers  $= 80 \times \frac{(100 - 75)}{100} = 20$  thousand =  ${}^{3}C_{1}$ .  ${}^{5}C_{2}$ .  ${}^{8}C_{3}$ .  ${}^{8}C_{x-2}$  = 35280 ⇒ 3 × 10 × 56 ×  $\frac{x(x-1)}{2}$  = 35280 Number of unsold Honda Civic cars in year 2012  $= (20 + 70) \times \frac{(100 - 60)}{100} = 36 \text{ thousand}$ Required Ratio =  $\frac{40 + 20}{20 + 36} = \frac{60}{56} = 15 : 14$ 2  $\Rightarrow$  x(x - 1) = 42 Since, x is a positive integer.  $\Rightarrow$  x = 7 30.(1) Number of Honda Civic cars available for sale: Number of software developers need to be included in the In 2011 = 80 thousand team = x - 2 = 5 In 2011 = 50 (holdsand In 2012 =  $(80 \times \frac{(100 - 75)}{100}) + 70 = 90$  thousand In 2013 =  $(90 \times \frac{(100 - 60)}{100}) + 20 = 56$  thousand In 2014 =  $(56 \times \frac{(100 - 80)}{100}) + 30 = 41.2$  thousand In 2015 =  $(41.2 \times \frac{(100 - 100)}{100}) + 60 = 60$  thousand In 2016 =  $(60 \times \frac{(100 - 75)}{100}) + 50 = 65$  thousand 35. (2) Number of software developers recruited = 8 + 1 = 9 Number of male software developers recruited = 9 - 3 = 6Number of male software developers need to be included in the team = 5 - 2 = 3Number of ways of forming the required team  $= {}^{3}C_{1}. {}^{5}C_{1}. {}^{8}C_{2}. {}^{6}C_{3}. {}^{3}C_{2}$ Hence, minimum number of Honda Civic cars available for  $= 3 \times 5 \times 28 \times 20 \times 3 = 25200.$ sale was in year 2014. 36. (2) Quantity I: Let the speed of both the buses be x km/h 31. (4) ∴ Total Distance = 3x + 3x = 6x km Speed of first bus = 20% less than previous day's speed =  $\frac{4}{5}$  km/h Speed of second bus = 20% more than previous day's speed =  $\frac{6}{2}$  km/h First bus leaves 40 minutes earlier than the second. Let the time taken by the first bus be y hours. Total distance =  $\frac{4}{5}xy + \frac{6}{5}x\left(y - \frac{2}{3}\right) = 6x$  $\Rightarrow$  y =  $\frac{17}{5}$  hours Let 0 be the center and r be the radius of the circle. Distance travelled by the first bus =  $\frac{17}{5} \times \frac{4}{5} x = \frac{68}{25} x \text{ km}$ Now. Distance travelled by second bus =  $\left(\frac{17}{5} - \frac{2}{3}\right) \times \frac{6}{5}x = \frac{82}{25}x$  km Radius of the circle:  $r^2 = \frac{AB^2}{M} + 6^2$  .....(i) According to the question, Distance travelled by second bus =  $\frac{82}{25}x = 3x + 21$  $r^2 = \frac{CD^2}{4} + 8^2$  ......(ii)  $\Rightarrow \frac{7}{25} x = 21$ From equations (i) and (ii)  $\frac{AB^2}{4} + 6^2 = \frac{CD^2}{4} + 8^2$  $\frac{AB^2 - CD^2}{4} = 8^2 - 6^2$  $\Rightarrow$  x = 75 km/h ∴ Total Distance = 6x = 450 km Let the distance between city X and Y; and city Y and Z be x 32.(1)  $\frac{(AB + CD)(AB - CD)}{(AB - CD)} = 28$ km each. And speeds of bus, stream and boat in still water be b, a ∵ AB – CD =4 cm .....(iii) and 5a km/h. : AB + CD = 28 cm .....(iv) Downstream speed = 5a + a = 6a km/hFrom equations (iii) and (iv) Upstream speed = 5a - a = 4a km/h AB = 16 cmAccording to the question, From equation (i)  $\frac{x}{6a} + \frac{x}{b} = \frac{2x}{b} + 1$  $\Rightarrow \frac{x}{6a} = \frac{x}{b} + 1$  $r^2 = \frac{16^2}{4} + 6^2 \Longrightarrow r = 10 \text{ cm}$ .....(i) Radius of the circle = 10 cm And,  $\frac{2x}{4a} = 12 \Longrightarrow x = 24a$ Sum of parallel sides of trapezium = AB + CD = 28 cm Height of trapezium = OE + OF = 6 + 8 = 14 cm Putting value of x in equation (i), Area of shaded region = Area of circle - Area of trapezium ABCD  $= \pi \times 10^2 - \frac{1}{2} \times 28 \times 14$  $4 = \frac{24a}{b} + 1 \Longrightarrow \frac{24a}{b} = 3 \Longrightarrow \frac{a}{b} = \frac{1}{8}$  $= 100\pi - 196$ Ratio of speed of bus to the speed of boat in still water  $\approx 118.16 \ cm^2$  $=\frac{\text{Speed of bus}}{\text{Speed of boat in still water}} = \frac{b}{5a} = \frac{8}{5} = 8:5$ Quantity II > Quantity I Quantity I: 37. (2) Time taken by the trains to meet for the first time Project team can be formed with following two 33. (4) Total Distance combinations: **Relative Speed** 1 project manager, 3 project leads, 2 software tester and 2 360 software developers 40 + 50Or 1 project manager, 3 project leads, 1 software tester = 4 hours

#### Quantitative Aptitude – SWGTQ-180105



Distance between point R and Q = Distance travelled by train B in 4 hours = 50 × 4 = 200 km Ouantity II: Time taken by the train A to reach  $Q = \frac{360}{40} = 9$  hours Time taken by the train B to reach P =  $\frac{360}{50}$  = 7.2 hours So, at the time when train A reached Q, train B already travelled for 1.8 hours (9 - 7.2 hours) of return journey. 40. (1) Distance travelled by train B in 1.8 hours = 1.8 × 50 = 90 km Sum of distances travelled by both the trains to meet for the second time  $= 360 - 90 = 270 \,\mathrm{km}$ Time taken by the trains to meet for the second time Total Distance Relative Speed 270  $=\frac{1}{40+50}$ = 3 hours Distance between point P and S = Distance travelled by train B before train A started return journey + Distance travelled by train B in 3 hours  $=90 + 50 \times 3$ = 240 km Quantity II > Quantity I 38. (5) Quantity I: Let vessel A contains 3x litres milk and x litres water and initial quantity of mixture in vessel A be 4x litres. Half of the content of vessel A is first poured into vessel B, 41. (1) then content of vessel B is poured into vessel C and finally contents of vessel C is poured into vessel A. So, vessel A finally contains contents of all the three vessels. Final ratio of milk and water in vessel A:  $\frac{\text{Quantity of milk in all three vessels}}{\frac{1}{2} + \frac{1}{2} +$ Quanity of water in all three vessels  $\frac{3x + 30}{x + 20} = \frac{9}{4}$  $\Rightarrow x = 20$ Initial quantity of mixture in vessel A = 4x = 80 litres Quantity I = Quantity II 39.(4) 20 men can complete the work in 12 days. So, 1 man can complete the same work in 240 days. Efficiency of 5 women = Efficiency of 3 men 5W = 3M Ratio of efficiencies:  $\frac{M}{W} = \frac{5}{3}$ Let, a man does 5 units and a woman does 3 units of work per day & total units of work are 1200 units. 8 days' work of 4 men and 10 women = 8 × (4 × 5 + 10 × 3) = 400 units Remaining work = 1200 - 400 = 800 units Quantity I: 42. (3) Let the additional number of women required be x. There are 4 men and 10 + x women now. Per day work of 4 men and 10 + x woman =  $4 \times 5 + (10 + x)$  $\times$  3 = 50 + 3x units No. of day required to complete the remaining work 800  $=\frac{0.000}{50+3x}$  $\frac{1}{50 + 3x} = 10$ x = 1010 additional women are required to complete the remaining work in 10 days. Quantity II: Let the additional number of men required be y. There are 4 + y men and 10 women now. Per day work of 4 + y men and 10 woman =  $(4 + y) \times 5 + 10$  $\times$  3 = 50 + 5y units No. of day required to complete the remaining work

800 50 + 5y800  $\frac{1}{50 + 5y} \le 8$  $y \ge 10$ At least 10 additional men are required to complete the remaining work in either 8 or less than 8 days. Quantity II ≥ Quantity I Quantity I: Probability of not more than one person telling a lie = Probability of all telling the truth + Probability of two persons telling the truth  $= P(A).P(B).P(C) + P(A).P(B).\overline{P(C)} + P(A).\overline{P(B)}.P(C) + \overline{P(A)}.P(B).P(C)$  $= 0.6 \times 0.4 \times 0.5 + 0.6 \times 0.4 \times 0.5 + 0.6 \times 0.6 \times 0.5 + 0.4 \times 0.4 \times 0.5$ = 0.12 + 0.12 + 0.18 + 0.08= 0.5Quantity II: Probability of at least two persons lying with B being one of them = Probability of all lying + Probability of two persons lying with B being one of them  $=\overline{P(A)}.\overline{P(B)}.\overline{P(C)} + P(A).\overline{P(B)}.\overline{P(C)} + \overline{P(A)}.\overline{P(B)}.P(C)$ = 0.4 × 0.6 × 0.5 + 0.6 × 0.6 × 0.5 + 0.4 × 0.6 × 0.5 = 0.12 + 0.18 + 0.12= 0.42 Ouantity I > Ouantity II Let total quantity of milk = 200x L And total quantity of water = 100x L Total milk in A and B = (20% + 15%) 200x  $= 35 \times 2x$ = 70x L Total water in A and  $B = 35 \times x$ Total water in F =  $35x + \frac{25}{100} \times \frac{25}{100} \times 100x$ = 35x + 6.25x= 41.25x L Let cost price of milk per liter be Rs.10 So, cost price of (70x + 41.25x) L of mixture = 70x × 10 = Rs.700x Selling price of (70x + 41.25x) L of mixture = 111.25x × 10 = Rs.1112.5x % profit =  $\frac{1112.5 \text{x} - 700 \text{x}}{700 \text{w}} \times 100$ 700x 412.5 7
825 14  $= 58\frac{13}{14}\%$ Or we can say that profit in due the quantity of water in the mixture. So we can directly write  $\% \text{ profit} = \frac{41.25x}{70x} \times 100$ = 58<sup>13</sup>/<sub>14</sub>% Milk in vessel A and C =  $\frac{50}{100} \times 2x = x$ Water in vessel A and C =  $\frac{55}{100} \times x$ = 0.55x Ratio of milk and water in M = x : 0.55x = 20:11According to question,  $x - \frac{20}{31} \times 62$ 6  $\frac{31}{55x - \frac{11}{31} \times 62 + 17}$ 5  $\Rightarrow \frac{x-40}{55x-5} = \frac{6}{5}$  $\Rightarrow 5x - 200 = 3.30x - 30$ x = 100 Quantity of milk in vessel B =  $\frac{20}{100} \times 2 \times 100$ = 40 L

### Quantitative Aptitude – SWGTQ-180105



46. (1) After selling ¼th of mixture, Let total milk in all 5 vessel = 200x 43.(2) And total water in all 5 vessel = 100x The quantity of water  $=\frac{3}{4} \times 20 = 15$  litres So, Quantity of milk =  $\frac{3}{4} \times 80 = 60$  litres Total milk in all vessel except C =  $\frac{65}{100} \times 200x$ Added water =  $\frac{1}{4} \times 100 = 25$  litre = 130x Total water in all vessel except C =  $\frac{55}{100} \times 100x$ Total water = 15 + 25 = 40 litre = 55x Required ratio = 40:60 = 2 : 3 And Ratio of milk and water in vessel C = 35 × 2x : 45x 47.(4) If sum of money = P  $\frac{P \times 4.5 \times 7}{100} - \frac{P \times 4 \times 7}{100} = 31.50$  $\frac{P \times 3.5}{100} = 31.50$ = 70x : 45x  $= 14 \cdot 9$  $\frac{P_{NO}}{100} = 0$ P =  $\frac{3150}{3.5}$ According to question,  $\frac{130x + \frac{14}{23} \times 115}{9} = \frac{9}{4}$  $\frac{\frac{23}{55x + \frac{9}{23} \times 115}}{\frac{130x + 70}{55x + 45} = \frac{9}{4}}$ P = Rs. 9004 48. (3) Let original price of gasoline = 100xIncreased price = 125x520x + 280 = 495x + 405 And let original consumption = y25x = 125 Original expenditure = 100xyx = 5 New expenditure =  $100xy + 100xy \times \frac{15}{100} = 115xy$ Total quantity of water in all five vessel = 100x = 500 LNew consumption =  $\frac{115xy}{125x} = \frac{115}{125}y$ Ratio of milk to water in vessel  $D = \frac{10}{100} \times 2x : \frac{5}{100} \times x$ 44. (5) Reduction in comsumption =  $\frac{y - \frac{115y}{125}}{y} \times 100 = 8\%$ = 4 : 1 Ratio of milk to water in vessel E =  $\frac{20}{100} \times 2x : \frac{15}{100} \times x$ Total work done by 20 men = 20 × 15 = 300 units 49. (4) = 8 : 3 Now, in 5 days work done by 20 men = 20 × 5 = 100 units From allegation : Remaining work = 300 – 100 = 200 units  $\frac{8}{11}$ According o the question, suppose x men left the work. Then,  $(20 - x) \times \frac{50}{3} = 200$ or, 1000 - 5x = 600or, 50x = 400 $\therefore x = 8 \text{ men}$ 50. (5) Let the speed of the car be x kmph. So,  $x - 38 = \left(\frac{40+60}{20}\right) \times \frac{18}{5}$  kmph or, x - 38 = 18 $\therefore x = 56 \,\mathrm{kmph}$ 16 12 3w 11 12 16 5w  $5w = \frac{5 11}{132 + 80}$ 5  $=\frac{1}{5\times11}$ 212  $w = \frac{1}{275}$ Required ratio =  $\frac{212}{63}$ Quantity of milk and water in vessel C  $\Rightarrow$ =  $\frac{35}{100} \times 2x + \frac{45}{100} \times x$ 45.(4) = 0.7x + 0.45x= 1.15x 1.15x = 115x = 100 Milk and water in B =  $\frac{20}{100} \times 200 + \frac{25}{100} \times 100$ = 40 + 25 = 65 Milk and water in  $E = \frac{20}{100} \times 200 + \frac{15}{100} \times 100$ = 40 + 15 = 55 Required % =  $\frac{65-55}{55} \times 100$  $=\frac{10}{55}\times100$  $= 18\frac{2}{11}\%$